Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Med ; 4(6): 353-360.e2, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-2301231

ABSTRACT

BACKGROUND: Post-mRNA vaccination-associated cardiac complication is a rare but life-threatening adverse event. Its risk has been well balanced by the benefit of vaccination-induced protection against severe COVID-19. As the rate of severe COVID-19 has consequently declined, future booster vaccination to sustain immunity, especially against infection with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, may encounter benefit-risk ratios that are less favorable than at the start of the COVID-19 vaccination campaign. Understanding the pathogenesis of rare but severe vaccine-associated adverse events to minimize its risk is thus urgent. METHODS: Here, we report a serendipitous finding of a case of cardiac complication following a third shot of COVID-19 mRNA vaccine. As this case was enrolled in a cohort study, pre-vaccination and pre-symptomatic blood samples were available for genomic and multiplex cytokine analyses. FINDINGS: These analyses revealed the presence of subclinical chronic inflammation, with an elevated expression of RNASE2 at pre-booster baseline as a possible trigger of an acute-on-chronic inflammation that resulted in the cardiac complication. RNASE2 encodes for the ribonuclease RNase2, which cleaves RNA at the 3' side of uridine, which may thus remove the only Toll-like receptor (TLR)-avoidance safety feature of current mRNA vaccines. CONCLUSIONS: These pre-booster and pre-symptomatic gene and cytokine expression data provide unique insights into the possible pathogenesis of vaccine-associated cardiac complication and suggest the incorporation of additional nucleoside modification for an added safety margin. FUNDING: This work was funded by the NMRC Open Fund-Large Collaborative Grant on Integrated Innovations on Infectious Diseases (OFLCG19May-0034).


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , Cohort Studies , COVID-19/prevention & control , SARS-CoV-2/genetics , mRNA Vaccines , Cytokines , Inflammation
2.
EBioMedicine ; 89: 104472, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2239637

ABSTRACT

BACKGROUND: Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS: We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS: The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION: Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING: K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.


Subject(s)
COVID-19 , Humans , Aged , HLA-DR alpha-Chains/genetics , SARS-CoV-2 , Leukocytes, Mononuclear , Prognosis
3.
NPJ Vaccines ; 7(1): 161, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2160219

ABSTRACT

Coronavirus disease-19 (Covid-19) pandemic have demonstrated the importantance of vaccines in disease prevention. Self-amplifying mRNA vaccines could be another option for disease prevention if demonstrated to be safe and immunogenic. Phase 1 of this randomized, double-blinded, placebo-controlled trial (N = 42) assessed the safety, tolerability, and immunogenicity in healthy young and older adults of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N = 64) tested two-doses of ARCT-021 given 28 days apart. During phase 1, ARCT-021 was well tolerated up to one 7.5 µg dose and two 5.0 µg doses. Local solicited AEs, namely injection-site pain and tenderness were more common in ARCT-021vaccinated, while systemic solicited AEs, mainly fatigue, headache and myalgia were reported in 62.8% and 46.4% of ARCT-021 and placebo recipients, respectively. Seroconversion rate for anti-S IgG was 100% in all cohorts, except for the 1 µg one-dose in younger adults and the 7.5 µg one-dose in older adults. Anti-S IgG and neutralizing antibody titers showed a general increase with increasing dose, and overlapped with titers in Covid-19 convalescent patients. T-cell responses were also observed in response to stimulation with S-protein peptides. Taken collectively, ARCT-021 is immunogenic and has favorable safety profile for further development.

4.
NPJ Vaccines ; 7(1): 154, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2133444

ABSTRACT

Remarkable potency has been demonstrated for mRNA vaccines in reducing the global burden of the ongoing COVID-19 pandemic. An alternative form of the mRNA vaccine is the self-amplifying mRNA (sa-mRNA) vaccine, which encodes an alphavirus replicase that self-amplifies the full-length mRNA and SARS-CoV-2 spike (S) transgene. However, early-phase clinical trials of sa-mRNA COVID-19 vaccine candidates have questioned the potential of this platform to develop potent vaccines. We examined the immune gene response to a candidate sa-mRNA vaccine against COVID-19, ARCT-021, and compared our findings to the host response to other forms of vaccines. In blood samples from healthy volunteers that participated in a phase I/II clinical trial, greater induction of transcripts involved in Toll-like receptor (TLR) signalling, antigen presentation and complement activation at 1 day post-vaccination was associated with higher anti-S antibody titers. Conversely, transcripts involved in T-cell maturation at day 7 post-vaccination informed the magnitude of eventual S-specific T-cell responses. The transcriptomic signature for ARCT-021 vaccination strongly correlated with live viral vector vaccines, adjuvanted vaccines and BNT162b2 1 day post-vaccination. Moreover, the ARCT-021 signature correlated with day 7 YF17D live-attenuated vaccine transcriptomic responses. Altogether, our findings show that sa-mRNA vaccination induces innate immune responses that are associated with the development of adaptive immunity from other forms of vaccines, supporting further development of this vaccine platform for clinical application.

5.
PLoS Biol ; 20(5): e3001643, 2022 05.
Article in English | MEDLINE | ID: covidwho-1951503

ABSTRACT

Ensuring high vaccination and even booster vaccination coverage is critical in preventing severe Coronavirus Disease 2019 (COVID-19). Among the various COVID-19 vaccines currently in use, the mRNA vaccines have shown remarkable effectiveness. However, systemic adverse events (AEs), such as postvaccination fatigue, are prevalent following mRNA vaccination, and the underpinnings of which are not understood. Herein, we found that higher baseline expression of genes related to T and NK cell exhaustion and suppression were positively correlated with the development of moderately severe fatigue after Pfizer-BioNTech BNT162b2 vaccination; increased expression of genes associated with T and NK cell exhaustion and suppression reacted to vaccination were associated with greater levels of innate immune activation at 1 day postvaccination. We further found, in a mouse model, that altering the route of vaccination from intramuscular (i.m.) to subcutaneous (s.c.) could lessen the pro-inflammatory response and correspondingly the extent of systemic AEs; the humoral immune response to BNT162b2 vaccination was not compromised. Instead, it is possible that the s.c. route could improve cytotoxic CD8 T-cell responses to BNT162b2 vaccination. Our findings thus provide a glimpse of the molecular basis of postvaccination fatigue from mRNA vaccination and suggest a readily translatable solution to minimize systemic AEs.


Subject(s)
COVID-19 , Animals , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Fatigue/etiology , Humans , Killer Cells, Natural , Mice , RNA, Messenger/genetics , Vaccination/adverse effects
6.
Med (N Y) ; 2(6): 682-688.e4, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1174423

ABSTRACT

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Immunoglobulin G , RNA , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccines, Synthetic , mRNA Vaccines
7.
EBioMedicine ; 65: 103262, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1124859

ABSTRACT

BACKGROUND: The coronavirus disease-19 (COVID-19) pandemic has cost lives and economic hardships globally. Various studies have found a number of different factors, such as hyperinflammation and exhausted/suppressed T cell responses to the etiological SARS coronavirus-2 (SARS-CoV-2), being associated with severe COVID-19. However, sieving the causative from associative factors of respiratory dysfunction has remained rudimentary. METHODS: We postulated that the host responses causative of respiratory dysfunction would track most closely with disease progression and resolution and thus be differentiated from other factors that are statistically associated with but not causative of severe COVID-19. To track the temporal dynamics of the host responses involved, we examined the changes in gene expression in whole blood of 6 severe and 4 non-severe COVID-19 patients across 15 different timepoints spanning the nadir of respiratory function. FINDINGS: We found that neutrophil activation but not type I interferon signaling transcripts tracked most closely with disease progression and resolution. Moreover, transcripts encoding for protein phosphorylation, particularly the serine-threonine kinases, many of which have known T cell proliferation and activation functions, were increased after and may thus contribute to the upswing of respiratory function. Notably, these associative genes were targeted by dexamethasone, but not methylprednisolone, which is consistent with efficacy outcomes in clinical trials. INTERPRETATION: Our findings suggest neutrophil activation as a critical factor of respiratory dysfunction in COVID-19. Drugs that target this pathway could be potentially repurposed for the treatment of severe COVID-19. FUNDING: This study was sponsored in part by a generous gift from The Hour Glass. EEO and JGL are funded by the National Medical Research Council of Singapore, through the Clinician Scientist Awards awarded by the National Research Foundation of Singapore.


Subject(s)
COVID-19/pathology , Lymphocyte Activation/immunology , Neutrophil Activation/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adult , Aged , Disease Progression , Drug Repositioning , Female , Gene Expression/genetics , Gene Expression Profiling , Humans , Male , Middle Aged , Neutrophils/immunology , Prospective Studies , T-Lymphocytes/immunology
8.
N Engl J Med ; 383(5): 452-459, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-692294

ABSTRACT

BACKGROUND: Insufficient vaccine doses and the lack of therapeutic agents for yellow fever put global health at risk, should this virus emerge from sub-Saharan Africa and South America. METHODS: In phase 1a of this clinical trial, we assessed the safety, side-effect profile, and pharmacokinetics of TY014, a fully human IgG1 anti-yellow fever virus monoclonal antibody. In a double-blind, phase 1b clinical trial, we assessed the efficacy of TY014, as compared with placebo, in abrogating viremia related to the administration of live yellow fever vaccine (YF17D-204; Stamaril). The primary safety outcomes were adverse events reported 1 hour after the infusion and throughout the trial. The primary efficacy outcome was the dose of TY014 at which 100% of the participants tested negative for viremia within 48 hours after infusion. RESULTS: A total of 27 healthy participants were enrolled in phase 1a, and 10 participants in phase 1b. During phase 1a, TY014 dose escalation to a maximum of 20 mg per kilogram of body weight occurred in 22 participants. During phases 1a and 1b, adverse events within 1 hour after infusion occurred in 1 of 27 participants who received TY014 and in none of the 10 participants who received placebo. At least one adverse event occurred during the trial in 22 participants who received TY014 and in 8 who received placebo. The mean half-life of TY014 was approximately 12.8 days. At 48 hours after the infusion, none of the 5 participants who received the starting dose of TY014 of 2 mg per kilogram had detectable YF17D-204 viremia; these participants remained aviremic throughout the trial. Viremia was observed at 48 hours after the infusion in 2 of 5 participants who received placebo and at 72 hours in 2 more placebo recipients. Symptoms associated with yellow fever vaccine were less frequent in the TY014 group than in the placebo group. CONCLUSIONS: This phase 1 trial of TY014 did not identify worrisome safety signals and suggested potential clinical benefit, which requires further assessment in a phase 2 trial. (Funded by Tysana; ClinicalTrials.gov number, NCT03776786.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Yellow Fever Vaccine , Yellow Fever/drug therapy , Yellow fever virus/immunology , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , Humans , Kaplan-Meier Estimate , Viremia/drug therapy , Yellow Fever/virology , Yellow fever virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL